EFFECTS OF DIFFERENT CHEMICAL PRETREATMENTS ON CELL WALL COMPOSITION AND ASH CONCENTRATION OF SWEET SORGHUM BAGASSE FOR BIOETHANOL PRODUCTION

Main Article Content

Recep İrfan Nazli
Osman Gulnaz
Veyis Tansi
Alpaslan Kusvuran

Abstract

Pretreatment is one of the key processes in lignocellulosic bioethanol production, which is needed to improve accessibility of enzymes to cellulose. This study was conducted to investigate the effects of different chemical pretreatments on cell wall composition and ash concentration of sweet sorghum bagasse. 9 different pretreatment methods used in the study can be categorized into 3 different methods such as dilute sulphuric acid (1, 1.5 and 2 % H2SO4 w/v), dilute sodium hydroxide (1, 1.5 and 2 % NAOH w/v) and sequential dilute sulphuric acid and sodium hydroxide (1 % H2SO4 w/v + 0.5 M NAOH, 1.5 % H2SO4 w/v + 0.5 M NAOH and 2 % H2SO4 w/v + 0.5 M NAOH). According to results, while 2 % H2SO4 w/v + 0.5 M NAOH gave the highest cellulose (91.51 %) and lowest lignin (1.7 %) concentrations, the lowest cellulose (65.11 %), hemicellulose (0.4 %), and highest lignin concentrations (23.42 %) were provided by 1.5 % H2SO4 w/v among pretreatments. Cellulose, hemicellulose and lignin contents of sweet sorghum bagasse after sodium hydroxide pretreatments ranged from 76.72 to 79.88, 11.75 to 14.62, and 2.05 to 4.11 %, respectively. The most appropriate cell wall composition for enzymatic hydrolysis was derived from sequential dilute sulphuric acid and sodium hydroxide pretreatments due to the fact that they provided the highest cellulose (90.68 – 91.51 %), lowest lignin (1.7 – 3.41 %) and desirable hemicellulose (1.10 – 1.82 %) contents. However, enzymatic hydrolysis must be done to learn which method enables the highest fermentable sugar production.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

1. Aita, G.A., Salvi, D.A. and Walker, M.S. (2011). Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresource Technology, 102 (6): 4444 - 4448.
2. Alvira, P., Pejo, T., Ballesteros, M., Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzyme hydrolysis: a review. Bioresource Technology, 101, 4851–4861.
3. Arora, R., Manisseri, C., Li, C., Ong, M.D., Scheller, H.V., Vogel, K. and Singh, S. (2010). Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). Bioenergy Research, 3(2): 134-145.
4. Barcelos, C.A., Maeda, R.N., Betancur, G. J.V., and Pereira, N. (2013). The essentialness of delignification on enzymatic hydrolysis of sugar cane bagasse cellulignin for second generation ethanol production. Waste and Biomass Valorization, 4(2): 341-346.
5. Cao, W., Sun, C., Liu, R., Yin, R., and Wu, X. (2012). Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology, 111, 215-221.
6. Carvalheiro, F., Duarte, L.C., and Gírio, F.M. (2008). Hemicellulose biorefineries: a review on biomass pretreatments. Journal of Scientific & Industrial Research, 849-864.
7. Chen, C., Boldor, D., Aita, G. and Walker, M. (2012). Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresource Technology, 110, 190-197.
8. Dogaris, I., Gkounta, O., Mamma, D. and Kekos, D. (2012). Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Applied Microbiology and Biotechnology, 95 (2): 541-550.
9. Eggeman, T. and Elander, R.T. (2005). Process and economic analysis of pretreatment technologies, Bioresour.Technol., 96: 2019-2025.
10. E Silva, C. F. L., Schirmer, M. A., Maeda, R. N., Barcelos, C. A. and Pereira, N. (2015). Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electronic Journal of Biotechnology, 18(1): 10-15.
11. Fengel, D. and Wegener, G. (1984). Wood: Chemistry Ultrastructure, Reactions. W. de Gruyter, Berlin, New York.
12. Gao, Y., Xu, J., Zhang, Y., Yu, Q., Yuan, Z. and Liu, Y. (2013). Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresource technology, 144, 396-400.
13. Guo, B. (2012). Two-stage acidic-alkaline pretreatment of Miscanthus for bioethanol production. University of Illinois at Urbana-Champaign.
14. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G. and Zacchi, G. (2006). Bioethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549–556.
15. Hendricks, A.T.W. and Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100 (1): 10-18.
16. Jiang, L. Q., Fang, Z., Li, X. K., Luo, J. and Fan, S.P. (2013). Combination of dilute acid and ionic liquid pretreatments of sugarcane bagasse for glucose by enzymatic hydrolysis. Process Biochemistry, 48 (12): 1942-1946.
17. Kim, S. and Kim, C.H. (2013). Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber. Renewable energy, 54, 150-155.
18. Kutlu, H.R. (2008). Yem Değerlendirme ve Analiz Yöntemleri. Çukurova Üniversitesi Ziraat Fakültesi Zootekni Bölümü Ders Notu, Adana, 68s..
19. Lee, J.W., Kim, J.Y., Jang, H.M., Lee, M.W. and Park, J.M. (2015). Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization. Bioresource technology, 182, 296-301.
20. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M. and Singh, S. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresource technology, 101(13): 4900-4906.
21. Liu, Z., Saha, B. and Slininger, P. (2008). Lignocellulosic biomass conversion to ethanol by Saccharomyces. In: Wall, J., Harwood, C., Demain, A. (Eds.), Bioenergy. ASM Press, Washington, DC, pp. 17–36.
22. Menezes, E.G., Do Carmo, J.R., Alves, J.G.L., Menezes, A.G., Guimarães, I.C., Queiroz, F., and Pimenta, C.J. (2014). Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnology progress, 30(2): 451-462.
23. Pandey, A., Soccol, C.R., Nigam, P. and Soccol, V.T. (2000). Biotechnological potential of agroindustrial residues. I: sugarcane bagasse. Bioresour. Technol. 74, 69–80.
24. Pappas, I.A., Kipparisides, C., and Koukoura Z. (2014). Second generation bioethanol production from Phalaris aquatica L. energy crop. The Future of European Grasslands, pp. 462-464. 25. Qing, Q., and Wyman, C. E. (2011). Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnology for biofuels, 4(1), 18.
26. Ramos, L.P. (2003). The chemistry involved in the steam treatment of lignocellulosic materials. Quimica Nova 26, 863–871.
27. Shatalov, A.A. and Pereira, H. (2012). Xylose production from giant reed (Arundo donax L.): Modeling and optimization of dilute acid hydrolysis. Carbohydrate Polymers, 87(1): 210-217. 28. Sipos, B., Réczey, J., Somorai, Z., Kádár, Z., Dienes, D. and Réczey, K. (2009). Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Applied Biochemistry and Biotechnology, 153 (1-3): 151-162.
29. Taherzadeh, M.J. and Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences, 9(9): 16211651.
30. Van Soest, P.J. (1963). Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists, 46:829-835.
31. Wang, Z., Keshwani, D.R., Redding, A.P. and Cheng, J.J. (2010). Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology, 101(10): 3583-3585.
32. Wang, L., Luo, Z., and Shahbazi, A. (2013). Optimization of simultaneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Industrial crops and products, 42, 280-291.
33. Weerasai, K., Suriyachai, N., Poonsrisawat, A., Arnthong, J., Unrean, P., Laosiripojana, N. and Champreda, V. (2014). Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. Bioresources, 9(4): 5988-6001.
34. Xu, J., Cheng, J. J., Sharma-Shivappa, R.R., and Burns, J.C. (2010). Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy & Fuels, 24 (3): 2113-2119.
35. Zhang, Y.H.P., Berson, E., Sarkanen, S. and Dale, B.E., (2009). Sessions 3 and 8: Pretreatment and biomass recalcitrance: Fundamentals and progress, Appl. Biochem.Biotechnol., 153: 80-83.
36. Zhang, M., Wang, F., Su, R., Qi, W. and He, Z. (2010). Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology, 101(13): 4959-4964.
37. Zhang, J., Ma, X., Yu, J., Zhang, X., and Tan, T. (2011). The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresource technology, 102(6): 4585-4589.