НАУЧНИ ФАКТИ И ПРЕТПОСТАВКИ ЗА ГЕНЕТСКИ МОДИФИЦИРАНИТЕ КУЛТУРИ: КОМЕРЦИЈАЛИЗАЦИЈА И ПРОИЗВОДСТВО ВО СВЕТОТ SCIENTIFIC FACTS AND ASSUMPTIONS ABOUT GENETICALLY MODIFIED CROPS: COMERCIALIZATION AND PRODUCTION IN THE WORLD

Main Article Content

Sonja Ivanovska
Mirjana Jankulovska
Ljupcho Jankuloski
Biljana Kuzmanovska
Dane Boshev
Vinko Stanoev

Abstract

The genetically modifications of the agricultural crops are performed for more than two decades. Debates over the genetically modified (GM) crops are taking place continuously and all of the countries do not have equal approach to these crops. The most of the world countries do not cultivate GM crops, and some of them have bans on cultivation. However, since 1996 the areas under GM crops and the number of countries with cultivation are increasing. The purpose of this work is to analyze the GM crops cultivation in the period 1996-2013. The review of cultivation is presented by countries, crops and modified traits. The result of the analysis demonstrate that the total area in 2013 have increased 100-fold, compared to 1996. The number of countries growing GM crops was increasing until 2011, reducing for one county afterwards. Within the European Union, beside the strongest attitude against cultivation of GM crops, five countries continue to plant such crops. Soybean, corn, cotton and canola are the four main GM crops grown worldwide. Within the last few years, cultivation of sugar beet and alfalfa is increasing. Beside these principal crops, papaya, squash, sweet pepper, tomato and poplar are grown on small areas. It is important to emphasize that the production of the six most cultivated crops is intended for industrial processing and feed only and not for food. Herbicide tolerance and insect
resistance remain to be dominant modified traits of the commercialized GM crops.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] Abdeen A., Virgós A., Olivella E., Villanueva J., Avilés X., Gabarra R., Prat S. 2005. Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol. 57(2):189-202.
[2] Altieri M.A., Nicholls C.I. 2005. Agroecology and the search for a truly sustainable agriculture. Basic textbook for environmental training. United Nations Environment Program, Environmental Training Network for Latin America and the Caribbean.
[3] Azadi Н., Ho P. 2010. Genetically modified and organic crops in developing countries: A review of options for food security. Biotechnology Advances 28 (2010) 160–168.
[4] Barfoot P., Brookes G. 2014. Key global environmental impacts of genetically modified (GM) crop use 1996-2012. GM Crops Food. 2014 Mar 11;5(2). [Epub ahead of print]
[5] BASF. 2010. http://www.basf.com/group/pressreleas e/P-10-179
[6] Basnayake SW, Morgan TC, Wu L, Birch RG. 2012. Field performance of transgenic sugarcane expressing isomaltulose synthase. Plant Biotechnol J. 10(2):217-25.
[7] Beckie H.J. 2013. Herbicide-Resistant (HR) Crops in Canada: HR Gene Effects on Yield Performance. Prairie Soils & Crops Journal, Volume 6, 33-39.
[8] Beyer P. 2010. Golden Rice and ‘Golden’ crops for human nutrition. New Biotechnology 27(5): 478-481.
[9] Borlaug N. 2007. Feeding a hungry world. Science 318: 359.
[10] Brookes G., Barfoot, P. 2009. Global impact of biotech crops: Income and production effects, 1996-2007. AgBioForum 12(2): 184- 208.
[11] Brookes G., Barfoot P. 2011. The income and production effects of biotech crops globally 1996–2009. Int J Biotechnol 12:1-49.
[12] Bruening G., Lyons J.M. 2000. The case of the FLAVR SAVR tomato. California Agriculture 54 (4): 6–7.
[13] Carpenter J. E. 2010. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28: 319–321.
[14] Carter C.A., Moschini G. 2nd, Sheldon I.M. еd. 2011. Genetically Modified Food and Global Warfare. Emerald Group Publishing. 380 p.
[15] Chen Z.L., Gu H., Li Y., Su Y., Wu P., Jiang Z., Ming X., Tian J., Pan N., Qu L.J. 2003. Safety assessment for genetically modified sweet pepper and tomato. Toxicology. 188(2-3):297-307.
[16] Conner A.J., Glare T.R., Nap J.P. 2003. The release of genetically modified crops into the environment. II. Overview of ecological risk assessment. Plant J. 33, 19–46.
[17] Copping L.G. Ed. 2010. The GM Crop Manual. A World Compendium. 1st Edition. Wallingford: CABI.
[18] Chakraborty S., Chakraborty N, Agrawal L., Ghosh S., Narula K., Shekhar S., Naik P.S., Pande P.C., Chakrborti S.K., Datta A. 2010. Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. PNAS, vol. 107, no. 41, 17533–17538.
[19] Chakraborty T. 2013. Release of Bt- Brinjal in Bangladesh: A Threat to the Region. Economic&Political weekly, Vol - XLVIII No. 50.
[20] Chen H., Chen W., Zhou J., He H., Chen L., Chen H., Deng X.W. 2012. Basic leucine
zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci.
193-194:8-17.
[21] Chen P.J., Senthilkumar R., Jane W.N., He Y., Tian Z., Yeh K.W. 2014. Transplastomic
Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol J. 2014 Jan 30. doi: 10.1111/pbi.12157. [Epub ahead of print]
[22] Clayton CB., Takashi Y. 1992. Invitation Paper (C.p. Alexander Fund): History of Bacillus Thuringiensis Berliner Research and Development. The Canadian Entomologist 124 (4): 587–616.
[23] Cohen J.I., Paarlberg R. 2004. Unlocking crop biotechnology in developing countries — a report from the field. World Dev 32(9):1563– 77.
[24] De Steur H., Gellynck X., Blancquaert D., Lambert W., Van Der Straeten D., Qaim M. 2012. Potential impact and cost-effectiveness of multi-biofortified rice in China. New Biotechnology 29: 432–442.
[25] Dewar A.J. 2010. GM glyphosate-tolerant maize in Europe can help alleviate the global food shortage. Outlooks on Pest Management 21: 55-63.
[26] Dill G.M., CaJacob C.A., Padgette S.R. 2008. Glyphosate-resistant crops: adoption, use and future considerations. Pest Management Science 64:326–331.
[27] Donald H.D. 1984. Biochemical genetics of the bacterial insect-control agent Bacillus thuringiensis: Basic principles and prospects for genetic engineering. Biotechnology &Genetic Engineering Reviews 2: 341–63. PMID 6443645.
[28] Fedoroff N.V. 2010. The past, present and future of crop genetic modification. New Biotechnology 27:461-465.
[29] Fraley R.T., Rogers S.G., Horsch R.B., Sanders P.R., Flick J.S., Adams S.P., Bittner
M.L., Brand L.A., Fink C.L., Fry J.S., Galluppi G.R., Goldberg S.B., Hoffmann N.L., Woo S.C. 1983. Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA. 80(15):4803-7.
[30] Funke T., Han H., Healy-Fried M.L., Fischer M., Schönbrunn E. 2006. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc. Natl. Acad. Sci. U.S.A. 103 (35): 13010–5.
[31] Graham P.H., Greenplate J. 2012. The design and implementation of insect resistance management programs for Bt crops. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 3:3, 144-153. Landes Bioscience.
[32] Halpin C. 2005. Gene stacking in transgenic plants--the challenge for 21st century plant biotechnology. Plant Biotechnol J. 3(2):141-55.
[33] Hao J., Niu Y., Yang B., Gao F., Zhang L., Wang J., Hasi A. 2011. Transformation of a marker-free and vector-free antisense ACC oxidase gene cassette into melon via the pollentube pathway. Biotechnol Lett., 33(1):55-61.
[34] Heck G.R., Armstrong C.L., Astwood J.D., Behr C.F., Bookout J.T., Brown S.M., Cavato T.A., Deboer D.L., Deng M.Y. 2005. Development and Characterization of a CP4 EPSPS-Based, Glyphosate-Tolerant Corn Event. Crop Science 45: 329–39. [35] Herrera-Estrella L., Simpson J., Martínez-Trujillo M. 2005. Transgenic plants: an historical perspective. Methods Mol Biol. 286:3-32.
[36] Hefferon K.L. 2012. Recent patents in plant biotechnology: impact on global health. Recent Pat Biotechnol. 6(2):97-105.
[37] Hofte H., Whiteley H.R. 1989. Insecticidal Crystal Proteins of Bacilllus thuringiensis Microbiological reviews53(2): p. 242-255
[38] Hsu Y., Shyu J.Z., Tzeng G. Policy tools on the formation of new biotechnology firms in
Taiwan. Technovation 2005;25:281–92.
[39] Huang J., Mi J., Lin H., Wang Z., Chen R., Hu R., Rozelle S., Pray C. 2010. A decade of Bt cotton in Chinese fields: assessing the direct effects and indirect externalities of Bt cotton adoption in China. cience China Life Sciences 53: 981–991.
[40] INFOMG. http://www.infomg.ro/web/en/GMOs_in_Rom ania
[41] James C. 2013. Global Status of Commercialized Biotech/GM Crops:2013. ISAAA Brief No. 46. ISAAA: Ithaca, NY.
[42] James C. 2012. Global Status of Commercialized Biotech/GM Crops: 2012. ISAAA Brief No. 44. Ithaca, New York: ISAAA.
[43] James, C. 1997. Global Status of Transgenic Crops in 1997. ISAAA Briefs No. 5. ISAAA: Ithaca, NY. pp. 31.
[44] Review of the Field Testing and Commercialization of Transgenic Plants, 1986 to 1995: The First Decade of Crop Biotechnology. ISAAA Briefs No. 1. ISAAA: Ithaca, NY. USA. pp. 31.
[45] Joyce P.A., Dinh S.Q., Burns E.M., O’Shea M.G. 2013. Sugar from genetically modified sugarcane: Tracking transgenes, transgene products and compositional analysis. International Sugar Journal, 12/2013.
[46] Juma C. 2011. Preventing hunger: biotechnology is the key. Nature 479: 471-472.
[47] Kamthan A., Kamthan M., Azam M., Chakraborty N., Chakraborty S., Datta A. 2012. Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality. Sci Rep. 2012;2:951.
[48] Kaniewski W., Lawson C., Sammons B., Haley L., Hart J., Delannay X., Tumer N. 9. 1990. Field resistance of transgenic Russet Burbank Potato to effects of infection by potato virus X and potato virus Y. Biotechnology 8(8), 750-754. [49] Kershen D.L. 2010. Trade and commerce in improved crops and food. An essay in food security. New Biotechnology 27:623-627.
[50] Knezevic S.Z. 2010. Use of Herbicide-Tolerant Crops as Part of an Integrated Weed Management Program last revised Revised February 2010.
[51] Knox O.G.G., Walker R.L., Booth Е.J., Hall C., Crossan A.N., Gupta V.V.S.R. 2012. Capitalizing on deliberate, accidental, and GMdriven environmental change caused by crop modification. J. Exp. Bot. (2012) 63 (2): 543-
549.
[52] Kumar A., Pareek A., Gupta S.M., 2012. Biotechnology in Medicine and Agriculture Publishing House. 994 p.
[53] Lundry D.R., Burns J.A., Nemeth M.A., Riordan S.G. 2013. Composition of grain and forage from insect-protected and herbicidetolerant corn, MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax), is
equivalent to that of conventional corn (Zea mays L.). J Agric Food Chem. 2013 Feb
27;61(8):1991-8.
[54] Nyange N.E., Kingamkono R.R., Kullaya A.K., Mneney E.E. 2011. Biotechnology for sustainable agriculture, food security and poverty reduction in Africa. Access Not Excess ed. Charles Pasternak. Chapter 3, pages 19-30.
© Smith-Gordon 2011
[55] Mannion A.M., Morse S. 2013. GM crops 1996-2012: A review of agronomic, environmental and socio-economic impacts, Working Paper 04/13, Centre for Environmental Strategy, University of Surrey, UK. ISSN: 1464-8083, also published as University of Reading Geographical Paper No. 195.
[56] Marchadier H., Sigaud P. 2005. Poplars in biotechnology research. Unasylva 221, Vol. 56, 38-39.
[57] Martineau B. 2001. First Fruit: The Creation of the Flavr Savr Tomato and the Birth of Biotech Foods. New York: Schaum. [58] McGinnis E.E., Meyer M.H., Smith A.G.2010. Sweet and Sour: A Scientific and Legal Look at Herbicide-Tolerant Sugar Beet. The Plant Cell, vol. 22 no. 6, 1653-1657.
[59] McGloughlin М., Re Е. 2006. The Evolution of Biotechnology: From Natufians to Nanotechnology. Dordrecht : Springer, 262р. [60] Mittal A., Gampala S.S., Ritchie G.L., Payton P., Burke J.J., Rock C.D. Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J. 2014
[61] Monsanto. 2009. SmartStax Corn Receives Japanese Import Approval. http://www.monsanto.co.uk/news/ukshowlib.p html?uid=14016
[62] Mozumdar L., Islam M.A., Saha S. 2012. Genetically modified organisms and sustainable crop production: A critical review. J. Bangladesh Agril. Univ. 10(2): 291–296.
[63] Murphy D. 2007. Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture. Cambridge: Cambridge University Press.
[64] Nicolia A., Manzo A., Veronesi F., Rosellini D. 2014. An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol. 34(1):77-88.
[65] Nuñez-Palenius H.G., Gomez-Lim M., Ochoa-Alejo N., Grumet R., Lester G., Cantliffe D.J. 2008. Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol. 28(1):13-55.
[66] Paine J.A., Shipton C.A., Chaggar S., Howells R.M., Kennedy M.J., Vernon G., Wright S.Y., Hinchliffe E., Adams
J.L., Silverstone A.L., Drake R. 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23: 482-7.
[67] Potrykus I. 2001. Golden Rice and Beyond. Plant Physiology 125 (3): 1157–1161.
[68] Qaim M., Kouser S. 2013. Genetically Modified Crops and Food Security. PLoS One. 8(6):e64879.
[69] Qaim M. 2003. Bt cotton in India: Field trial results and economic projections. World Development 31: 2115-2127.
[70] Qaim M., Zilberman D. 2003. Yield effects of genetically modified crops in developing countries. Science. 299(5608):900-2.
[71] Rajamohan F., Lee M.K., Dean DH. 1998. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Prog Nucleic Acid Res Mol Biol. 60:1-27.
[72] Redillas M.C., Jeong J.S., Kim Y.S., Jung H., Bang S.W., Choi Y.D., Ha S.H., Reuzeau C., Kim J.K. 2012. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain
yield under field conditions. Plant Biotechnol J. 10(7):792-805.
[73] Ronald P. 2011. Plant Genetics, Sustainable Agriculture and Global Food Security. GSA, Genetics, May 1, 2011 vol. 188, no. 1, 11-20.
[74] Rong W., Qi L., Wang A., Ye X., Du L., Liang H., Xin Z., Zhang Z. 2014. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J. 2014 Jan 3. doi:
10.1111/pbi.12153. [Epub ahead of print]
[75] Rule D.M., Nolting S.P., Prasifka P.L., Storer N.P., Hopkins B.W., Scherder E.F., Siebert M.W., Hendrix W.H. 3rd. 2014. Efficacy of pyramided bt proteins Cry1F, Cry1A.105, and cry2Ab2 expressed in Smartstax corn hybrids against lepidopteran insect pests in the northern United States. J Econ Entomol., 107(1):403-9.
[76] Senthilkumar R., Cheng C.P., Yeh K.W. 2010. Genetically pyramiding proteaseinhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol J. 8(1):65-
75.
[77] Stanton R.A., Pratley J.E., Hudson D., Dill G.M. 2010.Herbicide tolerant canola systems and their impact on winter crop rotations. Field Crop Reseach, Vol. 117, Issue 1, 161–166.
[78] Stein A.J., Sachdev H.P.S., Qaim M. 2008. Genetic engineering for the poor: Golden Rice and public health in India. World Development 36: 144–158.
[79] Tester M., Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science 327: 818–822.
[80] Todd F., Huijong H., Healy-Fried M.L.; Markus F., Ernst S. 2006. Molecular basis for the herbicide resistance of Roundup Ready crops. Proceedings of the National Academy of Sciences 103 (35): 13010–5.
[81] Tripathi S, Suzuki J, Gonsalves D. 2007. Development of genetically engineered resistant papaya for papayaringspot virus in a timely manner: a comprehensive and successful approach. Methods Mol Biol., 354:197-240.
[82] Vaeck M., Reynaerts A., Höfte H, Jansens S., De Beuckeleer M., Dean C., Zabeau M., Van Montagu M., Jan L. 1987. Transgenic plants protected from insect attack. Nature 328, 33–37.Glover D. 2010. Is Bt cotton a pro-poor
technology? A review and critique of the empirical record. J Agrar Change, 10:482–509.
[83] Veena. 2008. Engineering plants for future: tools and options. Physiol Mol Biol Plants. 14(1-2):131-5.
[84] Wang M., Liu C., Li S., Zhu D., Zhao Q., Yu J. 2013. Improved Nutritive Quality and Salt Resistance in Transgenic Maize by Simultaneously Overexpression of a Natural Lysine-Rich Protein Gene, SBgLR, and an ERF
Transcription Factor Gene, TSRF1. Int J Mol Sci. 14(5):9459-74.
[85] Wang Z.Y., Brummer E.C. 2012. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? Ann Bot. 110(6):1317-25.
[86] Ward D.P., DeGooyer T.A., Vaughn T.T., Head G.P., McKee M.J., Astwood J.D., Pershing D.A. 2005. Genetically enhanced maize as a potential management option for corn rootworm: Yield Gard rootworm maize
case study. In: Kuhlmann UECR, Ed. Western Corn Rootworm: Ecology and Management. 239-62.
[87] Xu J., Duan X., Yang J., Beeching J.R., Zhang P. 2013. Coupled expression of Cu/Znsuperoxide
dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav. 8(6):e24525. doi: 10.4161/psb.24525. Epub 2013 Apr 19.
[88] Ye X., Al-Babili S., Klöti A., Zhang J., Lucca P., Beyer P., Potrykus I. 2000. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451): 303–5.
[89] Zhu S., Li Y., Vossen J.H., Visser R.G.F., Jacobsen E. 2012. Functional stacking of three resistance genes against Phytophthora infestans in potato.Transgenic Research, 21(1): 89–99.