AGRONOMIC AND TECHNICAL EFFICIENCY OF THE PRODUCTIVITY OF OILSEED RAPE FROM COMBINATIONS OF SEVERAL NUTRIENTS

Igor Iljovski^{1*}, Daniela Dimovska², Zlatko Arsov¹, Ile Canev¹, Tatjana Prentovikj¹

¹Ss. Cyril and Methodius University in Skopje, Faculty of Agricultural Sciences and Food - Skopje, Skopje, North Macedonia
²Faculty of Agriculture, Goce Delchev University in Stip, North Macedonia *e-mail: igoriljovski@gmail.com

ABSTRACT

The increase in yield per unit area in kg and the attained outcome from the usage of certain amounts of nutrients are measured by agronomic efficiency (AE). In terms of the sensible use of nutrients, the capacity and to determine technical efficiency is a contribution to this research. The findings are intended to aid in determining the efficacy of using the most essential nutrients (N, P₂O₅, K₂O, S and B) to determine their impact on productivity capacity. The purpose was to evaluate how varied levels of nitrogen, sulfur, and boron affected on potential of winter oilseed rape. For N was using quantities of 100 and 150 kg ha⁻¹, for S 30 and 70 kg ha⁻¹; and B 1 and 2 kg B ha-1. N (50 kg ha⁻¹) P and K (90 and 180 kg ha⁻¹) was also applied before sowing. The research was performed in vegetation years 2016 - 2018, with two genotypes: variety and hybrid, in 15 variants and 4 replications: 1: control 50 N kg ha⁻¹; 2: 100 N kg ha⁻¹; 3: 150 N kg ha⁻¹; 4: 130 N+S kg ha⁻¹; 5: 170 N+S kg ha⁻¹; 6: 180 N+S kg ha⁻¹; 7: 220 N+S kg ha⁻¹; 8: 131 N+S+B kg ha⁻¹; 9: 132 N+S+B kg ha⁻¹; 10: 171 N+S+B kg ha⁻¹; 11: 172 N+S+B kg ha⁻¹; 12: 181 N+S+B kg ha⁻¹; 13: 182 N+S+B kg ha⁻¹; 14: 221 N+S+B kg ha⁻¹ μ 15: 222 N+S+B kg ha⁻¹. The average agronomic efficiency of all variants was 4.66 kg for the variety and 2.99 kg for the hybrid. Technical efficiency showed constant efficiency in three variants, and increase tendency to other.

Key words: oilseed rape, N, S, B, AE, efficiency.

INTRODUCTION

Agrochemistry advancements have made it possible to increase fertilizer efficiency and achieve high yields with minimal investment. Science promotes the development and efficiency of the use of nutrients in production, as well as the best practices in their application (Fageria et al., 2008). The fertilizer industry's goal and challenge is to improve nutrient efficiency, with a focus on agriculture and directions for economic justification and environmental protection (Roberts, 2008). The use of N, S and B increases oilseed rape yields from 9.7 kg ha⁻¹ to 13.7 kg ha⁻¹ or 3-31% for each kg of N application, and increases early flowering by 10% with the foliar application of B. (Ma et al. 2015). The following are the most common methods for measuring nutrient use efficiency: partial factor efficiency, apparent efficiency, physiological efficiency, and agronomic efficiency (AE) (Mosier et al., 2004, Dobermann, 2007). The technical efficiency technique, determinating with data envelopment analysis, was used to determine the efficiency of the used fertilizer elements, which represents a significant contribution in terms of the rational use of mineral fertilizers. When there are multiple inputs and outputs, efficiency

measurement focuses on generating an efficient hypothetical number as well as a specified average of efficient units to allow comparison of inefficient units (Hoang &Alauddin 2012). The results of the technical efficiency analysis are expressed in percentages as well as on a return level or scale set as constant efficiency, which actually determines the significance and constancy in several interactions, most commonly input sums, increasing efficiency, and decreasing efficiency (Wang Y. et al. 2017, Wang, G., et al. 2018).

MATERIAL AND METHODS

Aim of the research is using two analytical methods agronomic efficiency and technical efficiency to compare multiple combinations of N, S and B in the production of oilseed rape.

The trial was conducted in three vegetation years 2016 - 2018, with two genotypes of oilseed rape (variety zorica) (hybrid rohan), in 15 variants and 4 replications: 1: control \emptyset ; 2: N₁₀₀; $3: N_{150}; 4: N_{100}+S_{30}; 5: N_{100}+S_{70}; 6: N_{150}+S_{30}; 7: N_{150}+S_{70}; 8: N_{100}+S_{30}+B_1; 9: N_{100}+S_{30}+B_2; 10: N_{100}+S_{70}+B_1; 9: N_{100}+S_{10}$ 11: N₁₀₀+S₇₀+B₂; 12: N₁₅₀+S₃₀+B₁; 13: N₁₅₀+S₃₀+B₂; 14: N₁₅₀+S₇₀+B₁ и 15: N₁₅₀+S₇₀+B₂. From the fertilizers in the study, ammonium nitrate (NH₄NO₃) (34.4% N), ammonium sulfate ((NH₄) 2SO₄) (21% N; 24% S), boron (8% liquid mineral fertilizer) and NPK 5:15:30 complex mineral fertilizer were used ($P_2O_5 + K_2O$ total 270 kg ha⁻¹). To determine the efficiency of using N, S and B the agronomic efficiency (AE) was calculated according to the formula: AE = $Y_T - Y_{\varnothing} / F_T$ (Yt = yield (kg ha⁻¹) from of variant/treatment, Y yield (kg ha⁻¹) from control, Ft amount of element used in treatment (kg ha⁻¹) Murrell, 2009). To confirm the methodological framework and the used elements, doses and amounts, was used DEA Data Envelopment Analysis as a technique, comparing values from multiple inputs and outputs. The calculations to determine the efficiency are set as a ratio between the variants shown as inputs (area, sowing rate, doses/ha) and the outputs as yields. Excel (Office) and PSAW 17 and the Minitab 17 program are used for the statistical evaluation of the partial flows. The efficiency was calculated by Data Envelopment Analysis, using the framework data analysis platform.

RESULTS AND DISCUSSION

Agronomic Efficiency

The agronomic efficiency from the values obtained for seed yield with the combined use of N, S and B compared to the values of the control in variety (Zorica) was most pronounced in variants 11, 13 and 15 (28%). Individually according to elements, the agronomic efficiency from N-use is highest in variant 13 with an additional yield of 964 kg ha⁻¹, from S-use the highest efficiency and yield increase of 476.2 kg ha¹ was determined variant 11, for which same variant to determine the highest efficiency from the use of B (13.6 kg ha⁻¹). The efficiency of applied nitrogen in oilseed rape cultivation is much higher when used in combination with S (Zhao et al. 1993).

The total amount of N, S and B of 172 kg ha⁻¹, that for variant 11 (N100+S70+B2) gave the highest agronomic efficiency of 6.80 kg, i.e. per kg fertilizer applied the yield increased by 6.80 kg (1 170 kg), thus the highest seed yield of 4 170 kg ha⁻¹ (Table 1). AE increases when cultivating rapeseed with the use of small and medium amounts of N (25 and 50 kg N ha⁻¹) in contrast to the use of high amounts (100, 150 and 200 kg N ha⁻¹) (Holzapfel,2007). From the values for the seed yield when using N, S and C compared to the yield in the control in the hybrid (Rohan), the highest agronomic efficiency of 22% was determined in variant 13. The agronomic efficiency for N depends on the use of different combinations and fertilizers $(N1BF_1Zn_1)$, and increasing amounts decrease AE values (Hasanalideh et al. 2012). Individually, by elements, AE from the use of N is the highest in variant 13 with 18% participation in yield increase (874 kg ha⁻¹), from the use of S the highest agronomic efficiency of 8% was determined in variant 11 (350 kg ha⁻¹), and from the use of B, the highest AE was determined in variant 13 (11.6 kg ha⁻¹) (table 1).

The total amounts of N, S, and B of 182 kg ha⁻¹ in variant 13 (N150+S30+B2) gave the highest agronomic efficiency, i.e. for each kg of fertilizer used, the yield increased by 5.82 kg, while from this variant realizes the highest seed yield of 4 810 kg ha⁻¹.

Treatment	Yield	+ -	Total	AE	1	N		S	I	3	%			
variants	kg ha ⁻¹	од ø	N+S+B kg	(kg)	AE	+- kg	AE	+- kg	AE	+- kg	од ø	Ν	S	В
Variety (Zorica)														
1N50	3 000	Ø			•						ø			
2N100	3 4 5 0	450	100	4,50	4,50	450					13	13		
3N150	3 830	830	150	5,53	5,53	830					22	22		
4N100:S30	3 510	510	130	3,92	3,02	392	0,91	117,7			15	11	3	
5N100:S70	3 860	860	170	5,06	2,98	506	2,08	354,1			22	13	9	
6N150:S30	3 370	370	180	2,06	1,71	308	0,34	61,7			11	9	2	
7N150:S70	3 730	730	220	3,32	2,26	498	1,06	232,3			20	13	6	
8N100:S30:B1	3 860	860	131	6,56	5,01	656	1,50	196,9	0,05	6,6	22	17	5	0,2
9N100:S30:B2	3 500	500	132	3,79	2,87	379	0,86	113,6	0,06	7,6	14	11	3	0,2
10N100:S70:B1	3 650	650	171	3,80	2,22	380	1,56	266,1	0,02	3,8	18	10	7	0,1
11N100:S70:B2	4 170	1 170	172	6,80	3,95	680	2,77	476,2	0,08	13,6	28	16	11	0,3
12N150:S30:B1	3 960	960	181	5,30	4,40	796	0,88	159,1	0,03	5,3	24	20	4	0,1
13N150:S30:B2	4 170	1 170	182	6,43	5,30	964	1,06	192,9	0,07	12,9	28	23	5	0,3
14N150:S70:B1	3 680	680	221	3,08	2,09	462	0,97	215,4	0,01	3,1	18	13	6	0,1
15N150:S70:B2	4 140	1 140	222	5,14	3,47	770	1,62	359,5	0,05	10,3	28	19	9	0,2
			±	4,66	3,52	577	1,30	228,8	0,05	7,9	20.2	15,0	5.8	0,2
				Hy	brid (F	Rohan)	-					-		
1N50	3750	Ø									ø			
2N100	3900	150	100	1,50	1,50	100					4	4		
3N150	3800	50	150	0,33	0,22	50					1	1		
4N100:S30	3960	210	130	1,62	1,24	162	0,37	48,5			5	4	1	
5N100:S70	4110	360	170	2,12	1,25	212	0,87	148,2			9	5	4	
6N150:S30	4100	350	180	1,94	1,62	292	0,32	58,3			9	7	1	
7N150:S70	4050	300	220	1,36	0,93	205	0,43	95,5			7	5	2	
8N100:S30:B1	4690	940	131	7,18	5,48	718	1,64	215,3	0,05	7,2	20	15	5	0,2
9N100:S30:B2	4060	310	132	2,35	1,78	235	0,53	70,5	0,04	4,7	8	6	2	0,1
10N100:S70:B1	4200	450	171	2,63	1,54	263	1,08	184,2	0,02	2,6	11	6	4	0,1
11N100:S70:B2	4610	860	172	5,00	2,91	500	2,03	350,0	0,06	10,0	19	11	8	0,2
12N150:S30:B1	4380	630	181	3,48	2,88	522	0,58	104,4	0,02	3,5	14	12	2	0,1
13N150:S30:B2	4810	1060	182	5,82	4,80	874	0,96	174,7	0,06	11,6	22	18	4	0,2
14N150:S70:B1	4480	730	221	3,30	2,24	495	1,05	231,2	0,01	3,3	16	11	5	0,1
15N150:S70:B2	4450	700	222	3,15	2,13	473	0,99	220,7	0,03	6,3	16	11	5	0,1
<u> </u>					2,18	364	0,91	158,5	0,04	6,2	11.5	8.3	3.6	0,1

Table 1. Agronomic efficiency (AE), variety (Zorica) & hybrid (Rohan)

Measurement and analysis of technical efficiency

The expected research contribution also goes in the direction of determining the efficiency of the use of the main macro-elements (N, P₂O₅, K₂O, S) as well as a micro-element (B) to determine their effect (positive/negative) on the Production potential of oilseed rape - *Brassica napus* L.

In the three-year study, if the production area, the amount of sowing and the impact of the total doses of the fertilizer combinations are taken as the basic production inputs and compared with the yield achieved as a result or output in the process, the real effectiveness can be determined from the research results (Table 2).

Table 2. Efficiency between production area, sowing rate and dosages compared to the yields obtained

		Inputs		Output	Efficiency	in-scale on	
Variants	area m ²	seed rate kg/ha	total doses ha	yield ha	Efficiency	return -efficiency	
1N50 control	10000	8,0	320	3,58	100%	Constant	
2N100	10000	8,0	370	3,70	95%	Increase	
3N150	10000	8,0	420	3,69	88%	Increase	
4N100:S30	10000	8,0	400	3,74	92%	Increase	
5N100:S70	10000	8,0	440	4,00	93%	Increase	
6N150:S30	10000	8,0	450	3,63	84%	Increase	
7N150:S70	10000	8,0	490	3,95	90%	Increase	
8N100:S30:B1	10000	8,0	401	4,09	100%	Constant	
9N100:S30:B2	10000	8,0	402	3,67	90%	Increase	
10N100:S70:B1	10000	8,0	441	3,93	92%	Increase	
11N100:S70:B2	10000	8,0	442	4,23	98%	Increase	
12N150:S30:B1	10000	8,0	451	4,15	96%	Increase	
13N150:S30:B2	10000	8,0	452	4,35	100%	Constant	
14N150:S70:B1	10000	8,0	491	3,98	91%	Increase	
15N150:S70:B2	10000	8,0	492	4,37	100%	Constant	

From the analysis it can be seen that the control variant Variant 8 ($N_1PK+S_1+B_1$), Variant 13 and Variant 15 show constant or significant efficacy. Achieving constant efficiency with the lowest realized yield (output) in the control variant is the result of the lowest applied fertilizer quantities (input). While the constant efficiency of variants 8 (N100:S30: B1), 13 (N150:S30: B2) and 15 lies in the high yield (output) achieved compared to all input combinations.

Analysis of the efficiency of all other variants in terms of set inputs and realized yield as output show an increase in the efficiency scale and none of them has a decreased efficiency (Table 2). Framework analysis (DEA) also compares input efficiency as a goal with output efficiency as an output goal. The set inputs and the efficiency measured from them result in the differences in achieving the constant efficiency or the yield achieved as the output target (Table 3). The efficiency for area as a target and yield as a performance target Variant 6 (N₂PK+S₁) shows the largest difference at 1636 m², so the yield achieved can be achieved on a smaller area of (8364 m²). Other variants with a high difference are variants 3 (N150) and 9 (N100:S30: B2) or on 1187 m² and 1038 m² area it is less possible to realize the realized yield of these variants. In terms of sowing rate efficiency, the same variants 6 (N150:S30), 3 (N150) and 9 (N100:S30: B2) give the greatest difference in the yield obtained, or differences of 1.3 kg/ha and 0, 9 kg/ha more seed quantity used to achieve yields. In variant 6 (N150:S30) with 74 kg, variant 3 (N150) with 50 kg and variant 7 (N150:S70) with 47 kg, higher amounts of fertilizer than the yield actually achieved were determined, with a clear difference also being obtained in the variants 14 (N150:S70: B1) and 9 (N100:S30: B2) 44 kg and 42 kg applied amounts of more total fertilizer

Table 3.	Differences	between	the	effectiveness	of	target	inputs	and	effectivene	ss of	yield	as an
output ta	rget											

	Efficiency of inputs as a target									output
variants			se	ed rate l	kg/ha	total d	loses kg	yield/ha		
1N50 control	10000	10000	0	8,0	8,0	0,0	320	320	0	3,58
2N100	10000	9499	501	8,0	7,6	0,4	370	351	19	3,70
3N150	10000	8813	1187	8,0	7,1	0,9	420	370	50	3,69
4N100:S30	10000	9158	842	8,0	7,3	0,7	400	366	34	3,74
5N100:S70	10000	9326	674	8,0	7,5	0,5	440	410	30	4,00
6N150:S30	10000	8364	1636	8,0	6,7	1,3	450	376	74	3,63
7N150:S70	10000	9041	959	8,0	7,2	0,8	490	443	47	3,95
8N100:S30:B1	10000	10000	0	8,0	8,0	0,0	401	401	0	4,09
9N100:S30:B2	10000	8962	1038	8,0	7,1	0,9	402	360	42	3,67
10N100:S70:B1	10000	9152	848	8,0	7,3	0,7	441	403	38	3,93
11N100:S70:B2	10000	9839	161	8,0	7,9	0,1	442	435	7	4,23
12N150:S30:B1	10000	9551	449	8,0	7,6	0,4	451	431	20	4,15
13N150:S30:B2	10000	10000	0	8,0	8,0	0,0	452	452	0	4,35
14N150:S70:B1	10000	9108	892	8,0	7,3	0,7	491	447	44	3,98
15N150:S70:B2	10000	10000	0	8,0	8,0	0,0	492	492	0	4,37

CONCLUSION

The analysis of AE in the variety the total amounts of N100+S70+B2 172 kg ha⁻¹ gave highest agronomic efficiency of 6.80 kg, or for each kg of fertilizer used the yield increased by 6.80 kg (1 170 kg), as well as the highest seed yield of 4 170 kg ha⁻¹ was determined, while in hydrid, the total amounts of N150+S30+B2 182 kg ha⁻¹ gave the highest agronomic efficiency, or for each kg of fertilizer used, the yield increased by 5.82 kg, thus the highest seed yield of 4 810 kg ha⁻¹. The control variant, variant 8 (N100:S30:B1), variant 13 and variant 15 have constant or significant efficiency, according to the technical analysis, or combinations of N100:S30:B1, N150:S30:B2 and N150:S70:B2 have a constant efficiency in the achieved high yield (output) against all input combinations. For the efficiency of input total doses expressed in kg/ha, a greater number of variants with differences greater than 40 kg/ha⁻¹ of applied fertilizer were used to achieve the targeted yield like combination of N150:S30 74 kg (variant 6), N2PK 50 kg (variant 3), N2PK+S2 47 kg (variant 7), N150:S70:B1 44 kg (variant 14) and N100:S30:B2 42 kg (variant 9) quantities of applied total fertilizers more.

REFERENCES

Dobermann A. (2007). Nutrient use efficiency – measurement and management, In: Fertilizer Best Management Practices: IFA International Workshop on Fertilizer Best Management Practices. International Fertilizer Industry Association. Paris, France. pp. 1-28.

Fageria N. K., Baligar V. C., LiY C. (2008). The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century, Journal of Plant Nutrition, Vol. 31, pages 1121-1157. Hasanalideh, H. A., Hojati M. (2012). Enhancing yield and nitrogen use efficiency of *Brassica Napus* L. using an integrated fertilizer management, Advances in Environmental Biology, 6 (2):

pp. 641-647, 2012.

Hoang V. N., Alauddin M. (2012). Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An Application to OECD Agriculture, Environ Resource Econ (2012) 51: pp. 431–452, DOI 10.1007/s10640-011-9506-6, https://www.researchgate.net/publication/227010408_Input-Orient ated_Data_Envelopment_Analysis_Fr

amework_for_Measuring_and_Decomposing_Economic_Environmental_and_Ecological_Efficiency_n_Application_to_OECD_Agriculture.

Holzapfel B.C. (2007) Estimating nitrogen fertilizer requirements of canola (*Brassica napus* L.) using sensor-based estimates of yield potential and crop response to nitrogen, Master thesis, Faculty of Graduate Studies of the University of Manitoba, pp.130-131.

Ma B. L., Herath A. W. (2015). Timing and rates of nitrogen fertilizer application on seed yield, quality and nitrogen-use efficiency of canola, Crop and Pasture Science 67(2) pp.167-180, https://doi.org/10.1071/ cp15069, www.publish.csiro.au/cp/cp15069.

Mosier A.R., Syers K.J., Freney R.J. (2004). Agriculture and the Nitrogen Cycle. Assessing the Impacts of Fertilizer Use on Food Production and the Environment. Scope-65. Island Press, London.

Murrell S.T. (2009). Principles of Nutrient Use Efficiency of Phosphorus and Potassium, Proceedings of the Symposium, International Plant Nutrition Institute (IPNI)at the XVIII Latin American Congress of Soil Science, San José, Costa Rica, November 16-20, 2009, www.ipni.net/ipniweb/portal.nsf/0/d58a3c 2deca9d7378525731e006066d5/\$FILE/NUE_0110_15_hires.pdf.

Roberts T. (2008). Improving Nutrient Use Efficiency, Turk J Agric for 32, © TÜB< TAK, pp. 177-182.

Wang G., Lin N., Zhou X., Li, Z., Deng X. (2018). Three-Stage Data Envelopment Analysis of Agricultural Water Use Efficiency: A Case Study of the Heihe River Basin, Sustainability 2018, 10, 568; doi:10.3390/su10020568, www.mdpi.com/journal/sustainability.

WangY., Sh L., Zhang H., Sun S. (2017). A data envelopment analysis of agricultural technical efficiency of Northwest Arid Areas in China, Frontiers of Agricultural Science and Engineering 2017, Vol. 4, Issue (2): 195-207, http://journal.hep.com. cnhttps ://doi. org/10.15302/J-FASE-2017153.

Zhao, F., Evans J. E., Bilsborrow E. P., Syers J. K. (1993). Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (*Brassica napus* L). Journal of the Science of Food and Agriculture 63:1, 29-37.