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ABSTRACT 

Sulfonylureas are herbicides primarily used for control of weeds in early growth stages 

of cultivations. Structurally sulfonylureas contain a sulfonyl group with sulphur atom bonded 

to nitrogen atom of an ureylene group. According side chains there are pyrimidinyl-

sulfonylureas and the triazinyl-sulfonylureas. Swiss ADME descriptors have been used to 

develop QSAR models for predicting the pKa values of selected 27 sulfonlyurea herbicides: 

17 pyrimidinyl-sulfonylurea herbicides and 10 triazinyl-sulfonylurea herbicides. Variable 

selection methods including stepwise, forward, and best model were employed. Two different 

approaches were performed to develop a predictive QSAR model: a set with all selected 

herbicides and a divided set according structure (pyrimidinyl/ triazinyl). QSAR models were 

analyzed using following statistical parameters: coefficient of correlation, adjusted coefficient 

of correlation, mean squared error, root mean square error, and Fischer test. Models with four 

descriptors in both sets of herbicides were statistically better, based on the values of these 

parameters. 
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INTRODUCTION 

Pesticides are group of substances, exhibiting notably herbicide, insecticide, 

rodenticide, fungicide, or nematicide properties, used to control and repel pests in different 

fields (Marchand, 2023). Today pesticides are widely distributed environmental pollutants, 

because of their large use for agricultural, industrial, or domestic purposes (Pathak, et al., 

2022). 

Humans and animals are for that reason highly exposed to these chemicals, by an oral 

way through the consumption of food or water contaminated by pesticides. This is a major 

health issue, because today the toxicity of pesticides is well studied, meaning that they can 

cause various diseases, such as cancer and neurodegenerative, metabolic, reproductive or 

developmental pathologies. For toxicodynamic effect, exposed humans or animals, 

particularly at the gastro-intestinal level in response to oral exposure, must absorb pesticides. 

In the field of drug discovery very important fact is that the passage of drugs across the 

intestinal barrier and the blood-brain barrier is usually extensively characterized using in vitro 

cellular models, animal experimentation, and clinical human pharmacokinetics studies before 

marketing authorization (Sjogren, et al., 2014).  

On the other hand, human intestinal absorption and human brain distribution correspond 

to key steps of pesticide toxicokinetics, but remain poorly characterized (Chedik, et 

al., 2017). Problem with pesticides is that the prediction of brain permeation unfortunately 

could not be validated by human experimental pharmacokinetics data. That is the reasons for 

absence of experimental data in the scientific literature and pesticide database.  
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Today the intestinal absorption and brain disposition of drugs can moreover be in silico 

predicted with good accuracy, using various computer models (Toropov, et al., 2017).  

The substituted urea herbicides are a large group of non-selective herbicidal agents, 

introduced in the 1960s, applied for broadleaf weed and grass control in such noncrop areas.  

Sulfonylureas (SU) are group of substituted urea herbicides, primarily used for the 

control of weeds (annual and perennial) in early growth stages of cultivations (Bempelou, et 

al., 2019). Structurally all sulfonylureas consist a sulfonyl group (-S(=O)2) with its sulphur 

atom bonded to nitrogen atom of an ureylene group (functional group derived from urea) 

(Fig. 1). The side chains (R1 and R2) distinguish various sulfonylureas, such as pyrimidinyl-

sulfonylureas and the triazinyl-sulfonylureas. The first sulfonylurea herbicides were 

introduced in 1982 (CDC, 2023). 

 

 
 

Figure 1. Structural formula of sulfonylurea compounds 

 

SU are characterized by a broad-spectrum weed control at low application rates, good 

crop selectivity, and low acute and chronic animal toxicity (LD50 > 4000 mg/kg). Since they 

are widely applied as pre- and post-emergence herbicides, there are high possibility that their 

residues may contaminate water, soil, and air and accumulate in plant products (Losito, et al., 

2006). They inhibit the biosynthesis of the essential amino acids valine and isoleucine, 

stopping the cell division and plant growth (Liu, et al., 2023); generally are slightly toxic to 

freshwater fish and invertebrates, and practically nontoxic to wildfowl and other mammals 

(CDC, 2023). 

The pKa constant is a measure of the acidity of a molecule or compound and its is an 

important parameter in many chemical and biological processes, and its value can have 

significant effects on the behavior of molecules and compounds (Pereira, et al., 2016). 

The behavior of pesticides and their metabolites in the environment are largely 

dependent on their physicochemical properties. In case of ionisable pesticides, their pKa, 

values determine the degree of ionisation in water at the pH of the soil or biological system, 

and this in turn determines their effective lipophilicity. Accurate pKa values are therefore 

necessary to model pesticide behavior (Devlin, et al., 2008). 

SwissADME is a web tool designed for predicting pharmacokinetics parameters (Daina, 

et al., 2017; Chedik, et al., 2017), which can be used for pesticides. The BOILED egg 

method, as part of SwissADME tool, can predict the transfer of drugs across the blood-brain 

barrier with high accuracy (Daina & Zoete, 2016).  

In this work, an attempt has been made to apply this method for other classes of 

compounds such as sulfonylurea herbicides: pyrimidinyl- sulfonylurea herbicides and 

triazinyl-sulfonylurea herbicides. 

 

MATERIALS AND METHODS 

 

Pesticide Set 

The list of analyzed pesticides in the study and their symbols are shown in Table 1. A 

Simplified Molecular Input Line Entry System (SMILES) was collected online from for 

PubChem database (PubChem 2023).   
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Table 1. Name, symbol and pKa values of investigated sulfonylurea herbicides H1-H27  

 

Symbol 
Pyrimidinyl-sulfonylurea 

herbicides 
pKa Symbol 

Triazinyl-sulfonylurea 

herbicides 
pKa 

H1 Amidosulfuron 3.58 H18 Chlorsulfuron 3.40 

H2 Azimsulfuron 3.60 H19 Cinosulfuron 4.72 

H3 Cyclosulfamuron 5.04 H20 Ethametsulfuron methyl 4.20 

H4 Ethoxysulfuron 5.28 H21 Metsulfuron methyl 3.75 

H5 Flazasulfuron 4.37 H22 Prosulfuron 3.76 

H6 Flucetosulfuron 3.50 H23 Thifensulfuron methyl 4.00 

H7 Foramsulfuron 4.60 H24 Triasulfuron 4.64 

H8 Halosulfuron methyl 3.44 H25 Tribenuron methyl 4.65 

H9 Imazosulfuron 3.94 H26 Triflusulfuron methyl 4.40 

H10 Nicosulfuron 4.78 H27 Tritosulfuron 4.69 

H11 Oxasulfuron 5.10    

H12 Primisulfuron 3.47    

H13 Propyrisulfuron 4.89    

H14 Pyrazosulfuron ethyl 3.70    

H15 Rimsulfuron 4.00    

H16 Sulfometuron methyl 5.20    

H17 Sulfosulfuron 3.51    

 

pKa values 

All pKa values, presented in Table 1, were taken from Pesticide Properties Database 

(PPDB) website, a comprehensive source of data on pesticide chemical, physical and 

biological properties (PPDB, 2023).  

 

SwissADME descriptors 

SwissADME gives access to physicochemical, lipophilicity, water solubility, 

pharmacokinetics and drug-likeness properties and descriptors (Daina, et al., 2017). 

 

Brain or intestinal estimated permeation 

Using the SwissADME a web tool, the BOILED-Egg (Brain or Intestinal Estimated 

permeation) graph was applied for investigated pesticides (Islamoğlu & Hacifazlioğlu, 2022). 

The BOILED-Egg allows for intuitive evaluation of passive gastrointestinal absorption and 

blood-brain penetration (BBB) in function of the position of the molecules in the WLOGP (a 

purely atomistic method based on Wildman and Crippen's (Wildman & Crippen, 1999) 

piecewise system of the octanol-water distribution coefficient (log P) used as a measure of 

lipophilicity)-versus-TPSA (topological polar surface area) referential in the SwissADME a 

web tool (Daina, et al., 2017). In BOILED-Egg graph, the yellow area represents the 

transition to the blood-brain barrier (BBB), and the white area represents the absorption in the 

gastrointestinal system (AGS).  

 

Multiple Linear Regression Models (MLR) 

MLR is a method used for modeling linear relationship between a dependent variable 

Y, in this work pKa values and independent variable X - previously calculated 34 selected 

descriptors. Stepwise, forward and best model (with 2, 3 and 4 descriptors) variable selection 

methods were used. 

To develop a predictive QSAR model using XLSTAT software (XLSTAT, 2014), two 

different approach were performed:  

i) Set with all 27 selected herbicides H1-H27 labeled as TS.  

ii) Divided set: pyrimidinyl-sulfonylurea herbicides H1-H17 labeled as TS1 and triazinyl-

sulfonylurea herbicides H18-H27 labeled as TS2. 
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RESULTS AND DISCUSSION  

The present study intended to develop a mathematical QSAR model between the 

SweesADME descriptors of sulfonylurea herbicides and their pKa values. For this reason, an 

experimental database was consist of 27 herbicides and 34 different numerical descriptors. 

The herbicide set was divided on 17 pyrimidinyl-sulfonylurea herbicides (H1-H17) and 10 

triazinyl-sulfonylurea herbicides (H18-H27). Several variable selection methods were used 

such as: Stepwise (SW), Forward (FW) and Best model selection with 2, 3 and 4 descriptors 

(BM2, BM3 and BM4). 

In this study, one of the tasks was using SwissADME web tool in silico investigation of 

the human intestine and brain permeation of 27 sulfonylurea herbicides. SwissADME web 

tool, primarily was developed and validated for drugs (Daina, et al., 2017). 

In the BOILED-EGG chart, the white region indicates a high possibility of passive 

absorption from the gastrointestinal tract, while the yellow region is for a high possibility of 

brain diffusion. In the graph, pyrimidinyl-sulfonylurea herbicides (H1-H17) are represented 

as blue dots and triazinyl-sulfonylurea herbicides (H18-H27) as red dots. (Figure 2). 

Our results showed that a large proportion of studded herbicides (more than 92.59%) is 

predicted to be low absorbed by the human gastro-intestinal tract (Figure 2– gray region) 

(Mostafalou & Abdollahi, 2017). Only two herbicides: sulfometuron methyl and 

chlorsulfuron (H16 and H18) are high possibility of passive absorption by the gastrointestinal 

tract (Figure 2 - white region). 

 

 
 

Figure 2. BOILED-Egg graph for all investigated pesticides 

 

The next step in the research, QSAR models were constructed using all 27 herbicides 

(TS) and all calculated descriptors using multiple linear regression (MLR). MLR is a 

statistical method capable to evaluate the linear relationship between the molecular 

descriptors and the pKa values. The correlation coefficients (R2) for those models were 

analyzed (Table 2).  

Since unsatisfactory statistical results were obtained R2 < 0.7 (Table 2), next step was 

constructed QSAR model for separated sets of herbicides: pyrimidinyl-sulfonylurea 

herbicides H1-H17 (TS1) and triazinyl-sulfonylurea herbicides H18-H27 (TS2).  

The results showed that QSAR models with a larger number of descriptors (3 and 4) are 

statistically more significant (R2 > 0.8) (Table 2). 
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Table 2. R2 values for stepwise (SW), forward (FW) and best model selection with two 

(BM2), three (BM3) and four (BM4) descriptors for TS, TS1 and TS2 

 
R² SW FW BM2 BM3 BM4 

TS 0.675 0.675 0.459 0.602 0.675 

TS1 0.808 0.808 0.718 0.827 0.936 

TS2 0.371 0.371 0.691 0.888 0.974 

 

Further analysis was made on statistically adequate models presented in Table 3. 

Models are labeled as TS1-1 for set 1 and best model with 3 descriptors; TS1-2 for set 1 and 

best model with 4 descriptors; TS2-1 for set 2 and best model with 3 descriptors and TS2-2 

for set 2 and best model with 4 descriptors.  

 

Table 3. QSAR equation for ModelsTS1-1, TS1-2, TS2-1 and TS2-2 

 
Model QSAR equation 

TS1-1 pKa = 2.881 + 0.878*MLOGP + 185.737*ESOL + 2.521*BioScore 

TS1-2 pKa = 7.317 - 0.032*MW + 0.069*MR - 0.514*SiLogSw + 0.809*Lv 

TS2-1 pKa = 4.776 + 0.296*Hba + 0.747*AliLog S + 0.313*Vv 

TS2-2 pKa = 1.659 + 0.407*Hba - 0.605*XLOGP3 + 0.407*Vv - 0.629*Mv 

ESOL - ESOL Solubility (mol/l); BioScore - Bioavailability Score; MW – molecular weight; MR – molar 

refractivity;  SiLogSw - Silicos-IT LogSw; Lv -  Leadlikeness #violations; Hba -  #H-bond acceptors; Vv - 

Veber #violations 

 

The negative sign of the coefficient of MW and SiLogSw in Models TS1-2 and 

XLOGP3 and MV in TS2-2 reflects that pKa values will be improved for low values of both 

descriptors. On the contrary, the positive sign of the coefficients of the other descriptors 

indicates that high values of these descriptors will increase pKa values. 

The variance inflation factor (VIF) test ensures that the modeling process is not 

accompanied with multicollinearity. To accept the model, the VIF value should be between 1 

and 5, but in the case of VIF values higher than 10, there is significant multicollinearity; so 

the model must be corrected (Sadeghi, et al., 2022). In our case, descriptors in all models has 

VIF < 4 (Table 4), so these descriptors showed no intercorrelation. 

 

Table 4. VIF values for Models: TS1-1, TS1-2, TS2-1 and TS2-2 

 

Model 

TS1-1 

Statistic MLOGP ESOL BioScore 
 

Tolerance 0.8025 0.8089 0.9422 
 

VIF 1.2460 1.2362 1.0613 
 

 

Model 

TS1-2 

Statistic MW MR SiLogSw Lv 

Tolerance 0.2504 0.2879 0.6924 0.5384 

VIF 3.9936 3.4737 1.4442 1.8574 

Model 

TS2-1 

Statistic Hba Ali Log S Vv  

Tolerance 0.5045 0.4995 0.9712  

VIF 1.9821 2.0020 1.0296  

Model 

TS2-2 

Statistic Hba XLOGP3 Vv Mv 

Tolerance 0.3175 0.4250 0.4717 0.3302 

VIF 3.1496 2.3527 2.1200 3.0285 

 

Additional statistical parameters such as: adjusted coefficient of correlation (R2
adj.), 

mean squared error (MSE), root mean square error (RMSE) and Fischer test (F-test), were 

also analyzed (Table 5). Adjusted coefficient of correlation (R2
adj.) is a modified version of R2 

that has been adjusted for the number of descriptors in the QSAR model.  
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Table 5. R²adj., MSE, RMSE and F-test values for Models: TS1-1, TS1-2, TS2-1 and TS2-2 

 
 Model TS1-1 Model TS1-2 Model TS2-1 Model TS2-2 

R²adj. 0.7866 0.9144 0.8315 0.9524 

MSE 0.1046 0.0420 0.0378 0.0107 

RMSE 0.3234 0.2049 0.1944 0.1033 

F-test 20.653 43.711 15.801 46.040 

Fcrit.: 3,411 for TS1-1; 3.260 for TS1-2; 4.751 for TS2-1 and 5.192 for TS2-2 

 

According the values of R²adj., MSE, RMSE and F-test, models with 4 descriptor in both 

sets of herbicides were statistically better: the R2
adj. and F-test values are higher; MSE and 

RMSE values are lower in four-parametric models TS1-2 and TS2-2. The value of F-test 

compared to the critical value (Fcrit) in all QSAR models is relatively high, meaning that the 

error committed is less than what the model explains (Table 5). 

The plot of observed versus predicted activities for Models: TS1-1, TS1-2, TS2-1 and 

TS2-2 is presented in Figure 3. The all modes are statistically significant since all the point 

are very close to regression line. There is a perfect fit between experimental and predicted 

pKa values in all analyzed models (R2
pred. > 0.8). 

 

TS1-1: y = 0.826x + 0.734

R² = 0.826

TS1-2: y = 0.935x + 0.272

R² = 0.935
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Figure 3. Plot of observed versus predicted activities for Models:  

a) TS1-1 and TS1-2; b) TS2-1 and TS2-2 
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After summarizing all the results, it can be concluded that better models are obtained 

for structurally similar herbicides (set 1 and set 2) by using four parameter models: Model 

TS1-2 and TS2-2. These statistically significant QSAR models can be used to design new 

structurally similar herbicides, which will satisfy at the same time the requirements for the 

better herbicidal activity and reduced or no toxicity at all. 

 

CONCLUSION 

In this study, the QSAR method was used to predict the acidity of a set of sulfonylureas 

(SU) herbicides. Two different approaches were performed – set with all selected herbicides 

and set divided according to the structural similarity: pyrimidinyl- and triazinyl-sulfonylurea 

herbicides. 

Using a SwissADME online tool in silico predicting human intestine and brain 

permeation indicated that a 92.59% of studded herbicides are predicted to be poorly absorbed 

by the human gastro-intestinal tract. Only sulfometuron methyl and chlorsulfuron have a high 

possibility of passive absorption by the gastrointestinal tract. 

The QSAR models validity has been established through the selection of appropriate 

statistical parameters such as coefficient of correlation (R2), adjusted coefficient of 

correlation (R2adj.), mean squared error (MSE), root mean square error (RMSE) and Fischer 

test (F -test). According to the values of those parameters, models with 4 descriptors in both 

sets of herbicides were statistically better. 
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