AGRONOMIC EVALUATION OF TOMATO HYBRIDS FOR GLASS-HOUSE PRODUCTION

Zvezda Bogevska, Gordana Popsimonova, Rukie Agic, Margarita Davitkovska

Faculty of Agricultural Sciences and Food-Skopje, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia

Corresponding author: zvezdabogevska@gmail.com

Abstract

The tomato is the most widely cultivated vegetable crop, both in glasshouses and walk-in tunnels. The objective of the trial is to make a recommendation for tomato hybrids intended for protected crops production in the Republic of Macedonia. It was carried out in the region of Sv. Nikole (Central Macedonia) in glasshouses. The following newly introduced tomato hybrids, made by four different producers, have been examined: Fito - Meriva F_1 , Enza Zaden - Lezoforta F_1 and Amaneta F_1 , Syngenta - Zouk F₁, Clause - Loreli F₁. The applied experimental design was a randomized block system in five replications. Aside from the dynamics of germination, flowering, and ripening and harvesting, the productive traits of each hybrid were analyzed using ANOVA. It was confirmed that the hybrids Zouk F₁ and Loreli F₁ had the earliest germination and the latest germination was exhibited by the Amaneta F1. The shortest period between germination and flowering was recorded in the hybrid Loreli F_1 , and the longest in Lezoforte F_1 . The period between flowering and fruit ripening was shortest in the hybrid Zouk F_1 , and the longest one in Amaneta F_1 . The shortest period starting from germination to the beginning of ripening was recorded in the hybrid Amaneta F1 and the longest in Zouk F₁. In reference to the productive traits, it was recorded that the largest number of flowers per cluster had the hybrid Loreli F₁. The hybrid Loreli F₁ exhibited the largest percentage of fruit sets. The lowest percentage of fruit sets per plant was found in the hybrid Lezoforta F1. The largest average fruit mass was observed in the hybrid Meriva F_1 . The largest yield per plant was recorded in the tomato hybrid Meriva F₁. Finally, the highest yield was recorded in the hybrid Meriva F₁(173,73 t/ha).

Keywords: protected crops, vegetable production, yield.

Introduction

The tomato (Lycopersicon esculentum Mill.) is the leading vegetable crop in the country and in the world. In the production structure in the EU the tomato accounted for 25% while in The Republic of Macedonia it accounted for three percent less (Lazic et al., 2007). For its production in protected houses it is necessary to gain knowledge derived from experience and research on morphology, biology and production technology. On the market there are many different varieties and hybrids of tomatoes. In The Republic of Macedonia, according to the studies of Bogevska et al. (2010), there are 150 recognized varieties of which 126 are foreign, 18 are local and 6 are newly created domestic varieties (Trejsi, 1997, Joldzhik, 1997, Ace, 2001, Asmara, 2001, Longina, 2004, Laguna, 2004), while the number of indigenous landraces is 156. In the area belonging to The Republic of Croatia, 31 varities of tomatoes had been recognized during the period between 1997 and 2000, of which 17 proved suitable for greenhouse production and outdoors production (Borošić et al., 2001). Milutinović and Đukić (1996) studied 12 varieties of tomatoes. The highest yield were achieved by the hybrids luna (67t/ha) and kazanova (61t/ha). The largest number of fruits per plant was realized in the hybrid luna, 5 fruits per flower cluster, while the highest weight of the fruit of 240 g was achieved in the hybrid kazanova. Hybrids luna, lido, kazanova, and the narvik variety were recommended for production. Demirovska et al. (1990) examined the yield of five varieties of tomato grown in plastic tunnels intended for autumn production in two production years: 1986 to 1987. The examined varieties were as follows: luka F1 reference hybrid, balka F1, duple F1, caramelo F1 and

ruders Sk. The highest average yield per plant gave balka F1 - 1,48 kg, then the variety luka F1-1,23 kg following the variety duple F1 - 1,01 kg. The total yield was highest in variety balka F_1 - 54,64t/ha followed by the variety luca F_1 - 46,85 t/ha and the variety duple F_1 37,10 t/ha which is expected for this kind of production. Jankulovski et al. (2002) examined new tomato hybrids for greenhouse production over a period of two years: Sinatra F₁, Alcudia F₁, Gessa F₁, Ibiya F₁ and Q-75-48 F₁. These varieties were compared to the leading variety for greenhouse production, Marfa F₁. During the vegetation several parameters were examined: the vegetation period from sprouting to first harvest, percentage of fertilization, characteristics of the fruit, total yield and index of earliness. Based on the analyzed parameters authors recommended hybrids Gessa F₁, Sinatra F₁ and Alcudia F₁. Ibraim (2012) characterized 14 indigenous tomato landraces originating from other regions in Macedonia grown on various altitudes. Regarding the length of the vegetation period 5 landraces were characterized by a relatively short period of 103-105 days, while the other 9 have a longer vegetation period of up to 115 days. In terms of morphological characteristics, there were very significant differences in the tested landraces. For example, fruit weight ranged from 119 g in landrace 1 to 225 g in landrace 5. In reference to production traits the author stated that the yields achieved per plant and per hectare differ significantly in terms of the average of all tested landraces. In 7 landraces the yield is lower, while in the other 7 the yield increased from 24 to 27%. With many varieties and hybrids producers are asking themselves which ones are suitable for production. This means that the choice depends on the necessary information available for morphological, biological and most importantly, the production features. Hence, the aim of this research is to study the advantages and potentials of several tomato hybrids in glasshouse production through comparative study of biological, morphological and commercial properties. The differences in the results of the survey will be used for identification and recommendation of these hybrids that will guarantee stable production in glasshouses in Sveti Nikole.

Material and methods

In order to achieve the objective, according to the methodology, research was done in 2012 on 5 tomato hybrids from four seed companies (Fito -Meriva F_1 , Enza Zaden - Lezoforta F_1 , Amaneta F_1 , Syngenta - Zouk F₁, Clause- Loreli F₁). Meriva F₁ is an indeterminate medium-early maturing tomato hybrid intended for production in protected houses. The stem is robust with vigorous leaf mass and a well-developed root system. The fruits are large, weighing 200-220 g, spherical in shape, slightly flattened, with good toughness. The fruit is red. Resistant to diseases Verticillium. Fusarium, Tobaco mosaic virus and Cladosporium. Lezoforta F_1 is a medium-early maturing tomato hybrid used for protected houses as the first crop. The stem is robust with vigorous leaf mass and a well-developed root system. Fruits are round, slightly elongated in size and weigh from 200 to 220 g. The color is dark red. Resistant to diseases Verticillium, Fusarium, Tobaco mosaic virus and Cladosporium. Amaneta F₁ is an early indeterminate tomato hybrid intended for production in protected houses as the first crop. The stem is robust with strong leaf mass and strongly developed root system. The fruits are round, slightly flattened with a size of 220-250 g. The color of the fruit is dark red. Resistant to diseases Verticillium. Fusarium, Tobaco mosaic virus and Cladosporium. Zouk F₁ is an early indeterminate hybrid with high production potential. It can be grown throughout the year. The stem is robust with strong leaf mass and a strongly developed root system. Fruits are round, dark red with short sepal. The fruit size is 170-180 g, it is resistant to cracking and the following diseases: Verticillium. Fusarium, Tobaco mosaic virus and Cladosporium. Loreli F1 is an early indeterminate tomato hybrid intended for production in protected houses as well as in the open field. The plant is robust with strong leaf mass and a strongly developed root system compared to the other hybrids of the breeding company Clause. It is recommended to be grown as the first crop, because it is characterized by high tolerance to changing production conditions. The fruits are arranged in the form of a fish bone, weighing 180-220 g with a beautiful red color and excellent flavor properties. It is resistant to the following diseases: Verticillium. Fusarium, Tobaco mosaic virus and Cladosporium. The hybrids were tested in glasshouses in Sveti Nikole, where there are favorable conditions for

cultivation. The experiment was set by a method of randomized blocks with five repetitions. In order to perform characterization during the vegetation more biological and morphological parameters were analyzed. The technology of production was common for tomato growing. Hybrids were grown with previous production of seedlings. During the vegetation period the following phenological stages of growth were registered: days from sowing to sprouting, days from sprouting to flowering, days from flowering to early maturing, growing season (vegetation period) in order to determine the earliness of examined hybrids. Morphological characteristics were observed through the following parameters: number of leaves to the first flower branch, length of internodes and number of leaves between flowering branches, number of flowers per flower cluster, number of fruits per cluster, fruit shape, fruit mass, length of the peduncle, thickness of pericarp, cracking of tomato fruit, outbreak of cat face, number of chambers in the fruit, the color of the fruit. The number and weight of fruits per plant, yield per unit area, dynamics of yield per harvests contributed to obtain fertility of hybrids or to evaluate production properties. During the vegetation period, standard technology of tomato production in glasshouses was applied. The obtained results from examined parameters were statistically processed by calculating the mean value, standard deviation, coefficient of variation, error of the mean value. The yield and yield components were statistically processed by analysis of variance (ANOVA) and LSD test at the level of 0,05 and 0,01.

Results and discussion

In Table 1, stages of growth in days are shown. The number of days from sowing to sprouting ranged from 5 to 7 days, where the hybrid Amaneta F_1 germinated last for 7 days, compared to hybrids Zouk F_1 and Loreli F_1 , who sprouted for 5 days. Unlike sprouting, the hybrid Amaneta F_1 flourished first for 81 days, while the hybrid Lezoforta F_1 flourished last for 88 days. In this survey days from flowering to ripening ranged from 46 to 65 days. The shortest time from flowering to ripening had the hybrid Zouk F_1 (46 days), unlike hybrid Amaneta F_1 which began ripening for 65 days.

Hybrid	Date of sowing	Date of transplanting	Days from sowing to sprouting	Days from sprouting to flowering	Days from flowering to ripening	Vegetation period
MerivaF ₁	03.12.2011	24.02.2012	6	86	47	133
Lezoforta F ₁	03.12.2011	24.02.2012	6	88	54	142
Amaneta F ₁	03.12.2011	24.02.2012	7	81	65	146
ZoukF ₁	05.12.2011	24.02.2012	5	85	46	131
Loreli F ₁	08.12.2011	24.02.2012	5	83	49	132

Table 1. Stage of growth in days

The vegetation period for all hybrids ranges from 131 to 146 days where the hybrid Zouk F_1 had the shortest vegetation period (131 days), compared to the hybrid Amaneta F_1 where vegetation period was 146 days. Hybrids Meriva F_1 and Loreli F_1 very much alike to Zouk F_1 , had the shortest period of 133 days and 132 days respectively, unlike the hybrid Lezoforta F_1 which had 142 days. Together with the hybrid Amaneta F_1 , it belongs to hybrids with the longest growing season. The characteristics of the whole plant and the fruit of the tested hybrids are given in Table 2.

			· · · · · · · · · · · · · · · · · · ·		r			
Hybrid	Number of leaves to first flower cluster	Length between nodes (cm)	Number of leaves between flower cluster	Fruit shape	Cracking Yes/No	Cat face	Number of locular cavity	Fruit color
Meriva F ₁	6	21	3	round to slightly flattened	No	no	6	red
Lezoforta F ₁	6	17	3	round to slightly elongated	No	no	7	red
Amaneta F ₁	7	20	3	round to slightly flattened	No	no	5	red
Zouk F ₁	6	15	3	round	No	no	6	red
Loreli F ₁	7	18	3	round	No	no	7	red

Table 2. Characteristic of plant and fruit

According to the measured parameters, the number of leaves to the first flower branch for all hybrids is similar. Hybrids Amaneta F_1 and Loreli F_1 (7) had the highest number of leaves, while the lowest number was registered in hybrids Meriva F_1 , Lezoforta F_1 and Zouk F_1 (6). Length between nodes (flower branch) ranged from 21cm in hybrid Meriva F_1 to 15 cm in hybrid Zouk F_1 . The number of leaves between flower clusters is the same in all examined hybrids (3). The shape of the fruit is round to slightly flattened in hybrids Meriva F_1 and Amaneta F_1 , round to slightly elongated in hybrid Zouk F_1 and Loreli F_1 . Cracking as common phenomena depends on the specifics of the hybrid and the conditions and method of cultivation. In this research cracking was not expressed in tested hybrids. Also, there is no appearance of a high degree of deformity of the fruit structure ranges from 5 in Amaneta F_1 to 7 in Lezoforta F_1 and Loreli F_1 . Fruit color in all tested tomato hybrids was red.

Hybrid	Meriva F ₁	Lezoforta F_1	Amaneta F_1	Zouk F ₁	Loreli F ₁
Repetition I	5,1	4,4	5,4	5,1	5,8
П	5,6	4,8	5,4	4,6	5,6
III	5,4	4,8	5,5	4,5	6,1
IV	5,2	4,7	5,4	4,5	6,0
V	5,2	4,6	5,4	4,5	5,9
Mean	5,3	4,7	5,4	4,6	5,9
STDEV	0,21	0,18	0,04	0,25	0,22
CV	3,91	3,91	0,78	5,41	3,68
SX	0,09	0,08	0,02	0,11	0,10

Table 3. Number of flowers in cluster

The average number of formed flowers of five hybrids ranges from 4,6 to 5,9, where the largest number of flowers had Loreli $F_1(5,9)$ while the lowest number of formed flowers in a flower cluster had Zouk F_1 (4,6) (Table 3). In the research of Lekshmi and Celine (2015) the number of flowers per cluster in different tomato hybrids was from 5,65 to 7,16 which is higher in comparison to our findings. The coefficient of variation was calculated. The lowest coefficient of variation was observed in Amaneta F_1 (0,78%) while the highest was recorded in Zouk F_1 (5,41%). More important in the analysis of hybrid traits is the number of fertilized flowers. The number of fertilized flowers is presented in Table 4.

Hybrid		MerivaF ₁	$LezofortaF_1$	Amaneta F_1	ZoukF ₁	LoreliF ₁
Repetition	Ι	4,1	4,2	4,3	4,6	5,1
	П	4,9	4,3	4,8	4,2	5,3
	III	4,9	4,0	4,8	4,2	5,4
	IV	4,8	4,2	4,4	4,3	5,6
	V	4,7	4,1	4,9	4,2	5,4
Mean		4,7	4,2	4,6	4,3	5,4
SX		0,15	0,05	0,12	0,08	0,09
STDEV		0,33	0,12	0,26	0,18	0,21
CV		7,17	2,82	5,63	4,16	3,84
LSD 0,05				0,32		
	0,01			0,44		

Table 4	Number	of fortilized	flowers in	flower cluster
Table 4.	number	orientilized	nowersin	nower cluster

The analysis of the number of fertilized flowers (Table 4) showed that the highest average number of fertilized flowers had the hybrid Loreli F_1 (5,4), while the hybrid Lezoforta F_1 had lowest number of fertilized flowers (4,2). Concerning the coefficient of variation the highest coefficient was determined in the hybrid Meriva F_1 (7,17%) while the lowest in the hybrid Lezoforta F_1 (2,82%)

Table 5. Fruit mas	s (g)					
Hybrid		Meriva F_1	Lezoforta F_1	Amaneta F_1	Zouk F ₁	Loreli F_1
Repetiton	I	261,0	227,0	252,0	182,0	216,0
	П	241,0	206,0	229,0	196,0	209,0
		237,0	226,0	225,0	207,0	209,0
	IV	245,0	225,0	249,0	181,0	188,0
	V	256,0	221,0	220,0	209,0	203,0
Mean		248,0	221,0	235,0	195,0	205,0
STDEV		10,2	8,7	14,5	13,3	10,6
CV		4,1	3,9	6,2	6,8	5,5
SX		4,5	3,9	6,5	5,9	4,7

The mass of the fruit ranged from 195g in Zouk F_1 to 248g in Meriva F_1 . According to the coefficient of variation the highest value had the hybrid Zouk F_1 (6,8%) while the lowest hybrid Lezoforta (3,9%). The coefficient of variation showed that fruits of the hybrid Lezoforta F_1 were more uniform by weight. The mass of fruit is given in Table 5. The mass of the flower cluster was highest in Meriva F_1 (1158 g), while the lowest mass of flower cluster was determined in Zouk F_1 (837 g). The lowest value of the coefficient of variation was calculated in Amaneta F_1 (0,88%) while the highest was recorded for Zouk F₁ (4,77%). The mass of one flower cluster is shown in Table 6. The lowest yield per plant of 6 flowering clusters was obtained in Zouk F_1 (5,02 kg), while the highest yield was achieved by Meriva F₁(6,95kg). The coefficient of variation was lowest in hybrid Amaneta F1 (0,88%), while highest in hybrid Zouk F₁(4,77%). One important parameter of all tested hybrids is the obtain yield per unit area. The yield of this survey is calculated by the usual production structure within the 25,000 plants, which confirmed the results obtained in the optimal range for the tested hybrids. Values of yields for one year research are presented in Table 8. The yield in tested hybrids ranged from 125,6t/ha in hybrid Zouk F₁ to 173,7 t/ha in hybrid Meriva F₁. The lowest coefficient of variation was determined in hybrid Amaneta F_1 (0,9%) while the highest was determined in hybrid Zouk F₁ (4,8%). Shrestha and Sah (2014) made an evaluation of tomato cultivars for Central Tarai of Nepal. Results showed that cv. HRDTOM-005XHRDTOM-010 (30.64 t/ha) followed by Makis (28.90 t/ha) and cv. Srijana (28.87 t/ha) gave higher yield among the tested cultivars which does not correspond with our findings.

3rd INTERNATIONAL SYMPOSIUM FOR AGRICULTURE AND FOOD – ISAF 2017

Hybrid		$MerivaF_1$	$LezofortaF_1$	AmanetaF ₁	ZoukF ₁	$LoreliF_1$
Repetition	Ι	1070,0	953,0	1084,0	837,0	1102,0
	П	1181,0	886,0	1099,0	823,0	1108,0
	II	1161,0	904,0	1080,0	869,0	1129,0
	IV	1176,0	945,0	1096,0	778,0	1053,0
	V	1203,0	947,0	1078,0	878,0	1096,0
Mean		1158,2	927,0	1087,4	837,0	1097,6
STDEV		51,55	30,04	9,53	39,94	27,86
CV		4,45	3,24	0,88	4,77	2,54
SX		23,06	13,44	4,26	17,86	12,46

Table 6. Mass of one flower cluster (g)

Table 7. Yield per plant from 6 flower clusters (kg)

Hybrid		$MerivaF_1$	LezofortaF ₁	Amaneta F_1	ZoukF ₁	$LoreliF_1$
Repetition	Ι	6,420	5,718	6,504	5,022	6,612
	II	7,086	5,316	6,594	4,938	6,648
	II	6,966	5,424	6,480	5,214	6,778
	IV	7,056	5,670	6,576	4,668	6,318
	V	7,218	5,682	6,468	5,268	6,576
Mean		6,95	5,56	6,52	5,02	6,59
STDEV		0,31	0,18	0,06	0,24	0,17
CV		4,45	3,24	0,88	4,77	2,56
SX		0,14	0,08	0,03	0,11	0,08
LSD	0,05			0,29		
	0,01			0,40		

Table 8. Yields in t/ha

Hybrid	Meriva F ₁	Lezoforta F_1	Amaneta F_1	Zouk F ₁	Loreli F_1
Repetition I	160,50	142,95	162,60	125,55	165,30
I	177,15	132,90	164,85	123,45	166,20
	174,15	135,60	162,00	130,35	169,35
IV	176,40	141,75	164,40	116,70	164,40
V	180,45	142,50	161,70	131,70	164,65
Mean	173,7	139,1	163,1	125,6	165,98
STDEV	7,7	4,6	1,4	6,0	2,0
CV	4,6	3,3	0,9	4,8	1,2
Sx	3,5	2,1	0,6	2,7	0,9
LSD 0,05			6,9		
0,01			9,5		

Conclusions

Taking into consideration all examined traits, the hybrids Meriva F_1 , Loreli F_1 and Amaneta F_1 can be recommended for production in glasshouses.

Acknowledgments

We would like to dedicate this paper to our late and appreciated colleague Aco Ivanov who worked in the glasshouses in Sveti Nikole.

References

1. Bogevska, Z., Davitkovska, M., Iljovski, I.,Ristovska, B. (2010). Potencijalot na Republika Makedonija vo sozdavanje na brend sorti od zelenchukovi kulturi. Godisen zbornik na Fakultetot za zemjodelski nauki I hrana vo Skopje, Godina/Volume 55, str. 23-29.

2. Borošić, J., Lovoković-Milinković, J., Matotan, Z., Marušić, V., Čermak-Horbec, K. (2001) Novo introducirane sorte rajčiće, paprike i salate u Republici Hrvatskoj. Znastveni skup hrvatskih agronoma s međunarodnim sudjelovanjem. Zbornik sažetaka.

3. Demirovska, V., Čirkova, M., Jankulovski, D., Jovančev, P. (1990) Jesenja proizvodnja paradajza u plastenicima u skopskom region. Jugoslovenski simpozijum intenzivno gajenje povrća i proizvodnja u zaštićenom prostoru. Zbornik radova. pp. 369-374

4. Ibraim, J. (2012). Karakterizacija na avtohtoni populacii domat (*Lycopersicon esculentum Mill.*) od tipot jabucar vo Republika Makedonija (Magisterski trud). Univerzitet "Sv. Kiril I Metodij" – Skopje. Fakultet za zemjodelski nauki i hrana vo Skopje.

5. Jankulovski, D., Martinovski, Gj., Petrvska, J.K., Jankuloski, Lj. (2002). Characteristics of new tomato hybrids (*Lycopersicon esculentum* Mill.) for greenhouse production. First Symposium on Horticulture, Symposium proceedings, Skopje. pp. 186-190.

6. Lazic, B., Markovic, V., Gjurovka M., Ilin Z., Jankulovski, D., Martinovski, Gj. (2007). Specijalno gradinarstvo (avtorizirani predavanja). Univerzitet "Sv. Kiril i Metodij" – Skopje. Fakultet za zemjodelski nauki i hrana vo Skopje.

7. Lekshmi, S. L., Celine, V. A. (2015). Evaluation of tomato hybrids for fruit, yield and quality traits under polyhouse conditions. International Journal of Applied and Pure Science and Agriculture (IJAPSA). Volume 01, Issue 7. pp. 58-64

8. Milutinović, S., Đukić, Ž. (1996). The yield and yield components at tomato cultivars and hybrids. First Balkan Symposium Vegetables & Potatoes. The Book of Abstracts. p. 134

9. Shrestha, S. L., Sah R. L. (2014). Evaluation of Tomato Cultivars for Central Tarai of Nepal. Nepal Journal of Science and Technology Vol. 15, No.2.pp. 11-16.